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The effects of viscoelasticity on the hydrodynamic stability of plane free shear flow are 
investigated through a linear stability analysis. Three different rheological models have 
been examined : the Oldroyd-B, corotational Jeffreys, and Giesekus models. We are 
especially interested in possible effects of viscoelasticity on the inviscid modes 
associated with inflexional velocity profiles. In the inviscid limit, it is found that for 
viscoelasticity to affect the instability of a flow described by the Oldroyd-B model, the 
Weissenberg number, We, has to go to infinity in such a way that its ratio to the 
Reynolds number, G K We/Re, is finite. In this special limit we derive a modified 
Rayleigh equation, the solution of which shows that viscoelasticity reduces the 
instability of the flow but does not suppress it. The classical Orr-Sommerfeld analysis 
has been extended to both the Giesekus and corotational Jeffreys models. The latter 
model showed little variation from the Newtonian case over a wide range of Re, while 
the former one may have a stabilizing effect depending on the product sWe where s is 
the mobility factor appearing in the Giesekus model. We discuss the mechanisms 
responsible for reducing the instability of the flow and present some qualitative 
comparisons with experimental results reported by Hibberd et al. (1982), Scharf 
(1985a, b) and Riediger (1989). 

1. Introduction 
Developing an understanding of instability and transition in free shear flows at high 

Reynolds numbers has been a central problem in the theory of fluid motion for over 
a century. In the present study we are concerned with the instability of viscoelastic 
fluids in free shear flow and in particular in the possibility that viscoelasticity may 
significantly affect the inviscid modes associated with inflexional velocity profiles. 
Thus, our work is distinguished from that of most previous investigators who focused 
on the Newtonian mixing layer. The last decade has seen important progress in the 
understanding of the mechanisms governing the process of transition to turbulence in 
free shear layers (see e.g. Ho & Huerre 1984; Corcos & Lin 1984; Herbert 1988; 
Metcalfe et al. 1987; Moser & Rogers 1991). Important understanding of the 
mechanisms of vorticity production, subharmonic (pairing) instabilities, and vortex 
stretching has come from such studies. This understanding opens the possibility of 
rational methods of manipulation and active control of turbulence by influencing 
transition mechanisms. Examples of such manipulation include the use of time- 
dependent motion of boundaries, modification of the properties of surfaces, including 
grooves and ribs, and addition of polymers and/or fibres to the flow. It is this last 

t With Appendix E by E. J. Hinch. 
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method that is relevant to the present study. It has been known for over forty years that 
the addition of small amounts of dissolved polymer can dramatically reduce turbulent 
drag. There is in fact a large literature on the subject: see for example the review by 
Berman (1978). In itself this paper is not directly relevant to drag reduction but is a first 
step in the study of high-Reynolds-number non-Newtonian flows with shear. 

There are only a few experimental studies of viscoelastic free shear flows and there 
is little understanding of how polymers affect either primary or secondary instability 
modes. Recently Hibberd, Kwarde & Scharf (1982), Scharf (1985a, b) and Riediger 
(1989) studied the effects of the addition of polymers and surfactants on the instability 
of the mixing layer. The results of the experimental measurements and flow 
visualizations show a delay in the formation of the typical structures of the plane 
mixing layer, i.e. roll-up and pairing. They also reveal that the presence of polymer 
additives leads to an enhancement of the large-scale turbulent structures and an almost 
complete suppression of the small-scale structures. 

The motivation for the present linear stability analysis is two-fold: first we want to 
determine the effects of the addition of polymers on the instability of inviscid plane 
shear flows, and second we wish to establish the conditions under which viscoelasticity 
affects the flow and understand the mechanisms involved. 

We comment that unlike the Newtonian case, predictions are likely to depend upon 
details of the equations relating stress to shear rate. The relation between these two 
tensors is nonlinear and usually involves an integral or differential equation known as 
the constitutive equation. For a thorough discussion of the development of rheological 
constitutive equations for viscoelastic fluids and their application in fluid dynamics see 
Goddard (1979), Bird et al. (1987) and Larson (1988). In the present study, we will 
examine three rheological models. Initially we use the Oldroyd-B model and establish 
that, for this model, there is a reduction of the instability modes due to a coupling 
between the vorticity and the normal stresses. This coupling is characterized by a 
dimensionless number, G, that involves only fluid properties and is independent of 
kinematics. In addition we will present the results of an asymptotic analysis in the limit 
of large G .  Finally, we give predictions of the effects of viscoelasticity on the 
mechanisms usually observed in the Newtonian mixing layer. 

This stabilizing effect raised questions about the robustness of the mechanisms of 
stabilization to details of the rheological model. In fact since the Oldroyd-B model has 
no shear thinning or plateau of normal stress, its range of applicability is limited to 
dilute solutions and to moderate shear rates (Bird et al. 1987). Thus, is we wish to 
describe more general viscoelastic behaviour, we must have a rheological equation of 
greater generality that can achieve a closer correspondence with the known rheological 
properties. For this purpose we examined two models known to describe qualitatively 
many observed rheological effects of non-Newtonian fluids : the corotational Jeffreys 
model and the Giesekus model. For these models, we found no effect on the inviscid 
modes as Re +a. Accordingly, the classical Orr -Sommerfeld analysis has been 
extended to both of these models, and we studied the effects of viscoelasticity at finite 
Reynolds number. 

2. Problem definition 
The mixing-layer flow configuration is standard, as shown in figure 1 .  U, (respectively 

U,) is the free-stream velocity of the upper (lower) flow. We denote by uo = i(U, - U,) 
the free-stream velocity in a reference frame moving with the average velocity of the 
flow +(q + &), and by S the momentum thickness of the mixing layer. In all the 
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FIGURE 1. Schematic of the mixing layer. 

subsequent analysis, we use uo as the reference velocity and 6 as the reference length to 
make our equations dimensionless. The flow is governed by the continuity and Cauchy 
momentum equations : 

v*v = 0, (1) 

DV 
P- Dt = -vp+v ‘7; 

v is the velocity vector, p the dcnsity, p the isotropic prcssure and T the extra stress 
tensor. In dimensionless form, ( 1 )  and (2) are characterized by one dimensionless 
group, the Reynolds number, Re = ~ S U , / T , I ,  where T,I is a measure of the shear viscosity 
of the fluid. Equations (1) and (2) are closed through evolution equations for the extra 
stress tensor T. We use a class of differential models of the form h D.c/Dt =AT, u, Vv), 
the details of which will be given in the next section. Scaling of this class results in at 
least one additional parameter, the Weissenberg number, We = hu,/S, a dimensionless 
measure of the polymer relaxation time, A. 

We make the standard parallel-flow assumption and take the mean flow as 

v,(Y> = tanh(y), 

wo(y)  = tanh(y)2- 1, UI,(y) = log(cosh(y)). (3) 

Here U,(y) is the streamwise velocity, wo(y) the spanwise vorticity and uI,(y) the 
associated streamfunction expressed in dimensionless form. Note that (3) is a solution 
of the Cauchy equation provided that there is a dimensionless body force 

where uy2 is the shear component of the base state polymer stress a. The expression for 
a& depends on the specific rheological model, but as we will see in the next section, it 
is O(1) uniformly in the flow domain. As a consequence, we can argue that the 
correction due to F is uniformly U ( l / R e )  in space for all three rheological models. 

We assume that the laminar flow is quasi-parallel, i.e. that its variation is entirely in 
the direction normal to the flow, and that the disturbances are wave-like. The parallel- 
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flow assumption is a satisfactory first approximation for treating the linear stability of 
viscous flows at sufficiently high Re (see Ling & Reynolds 1973). In Appendix A, we 
analyse the correction to the laminar flow of a Newtonian fluid due to the presence of 
viscoelasticity for the Oldroyd-B model in the special inviscid limit, Re < 1, We < 1 
and We/Re = O(1). In this analysis we show that the expansion leads to an equivalent 
Blasius problem and that, using a simple transformation, the base-state flow profile can 
be mapped into the Blasius profile. Since solutions for the mixing layer are known to 
be closely approximated by the profile given in (3), we conclude that this profile is also 
satisfactory for the purpose of examining inviscid modes of the viscoelastic mixing 
layer described by the Oldroyd-B model. For other models, we expect that the quasi- 
parallel-flow assumption will be still valid at finite Reynolds numbers. 

For the parallel flow of a Newtonian fluid, the theorem of Squire (1933) states that 
two-dimensional disturbances are temporally more unstable than three-dimensional 
disturbances, and an investigation of two-dimensional disturbances is sufficient to 
determine the critical Reynolds number. The equivalent Squire theorem for the flow of 
a viscoelastic fluid described by any of the three rheological models examined in this 
study has not been proved or disproved in the viscous case. In the special limit of the 
inviscid highly elastic mixing layer described by the Oldroyd-B model, we show that 
there is a Squire's transformation (see Appendix B) showing that linear theory does not 
distinguish between two- and three-dimensional modes in the special limit Re +a, 
G - We/Re = O(1). 

In the present study we will consider only the case of purely two-dimensional 
disturbances even though we are aware that viscoelasticity may introduce a new type 
of instability which, if associated with a wave growing in the spanwise direction, will 
lead to a competition between elastic instabilities and those associated with viscous 
mechanisms (Giesekus 1966). 

3. Linear stability analysis 
We study the linear stability of (3) and its associated stress field. For any constitutive 

equation the streamfunction and the stress components are represented by the base- 
state profile plus a small perturbation. The expressions are substituted into the 
equations which are linearized in the usual way. Perturbations quantities are then 
Fourier transformed in x and t : 

Y ( y )  = Y'&) + $ ( ~ ) e ~ ~ ( ~ - ' ~ ) ,  ~ ( y )  = T&) + T(y)eia(s-ct), etc. (4) 

We treat the temporal stability of the flow, so a is the real wavenumber and c is the 
complex frequency. 

In the subsequent analysis, the extra stress tensor T is written as the sum of two 
stresses (Larson 1988) : 

T = T S + T P  (5) 
The first term corresponds to the contribution of the Newtonian solvent and is 
proportional to the shear rate tensor y = ( V V ) + ( V V ) ~ :  

TS = ys+, (6) 
with q8 the solvent viscosity. The second term represents the polymeric contribution, 
which we write as 

where yp is the polymeric contribution to the shear viscosity. We let K = y8/(ys + rp)  = 

r p  a, (7) +J = 
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ys/q and throughout this study y = qs+vp denotes the total viscosity of the fluid. 
Equation ( 5 )  then becomes 

Using these expressions, the perturbation vorticity equation is 

7 = $ K Y + ( 1 - K ) a ] .  (8) 

We see that elasticity can have an effect on the inviscid mode for Re-tco only if the 
elastic stress components are large. Substituting the expressions in (4), we obtain the 
following linearized Cauchy equation in terms of the streamfunction 4 : 

K 
ia{(V,-c)(D2-a2)-D2~}--(D2-a2)2 $ = ~ [ ( [ ( D 2 + a 2 ) a 1 2 + i a D ( a l l - ~ 2 2 ) ] ,  

Re I Re 
(10) 

where D = d/dy. In the following subsections we give the differential equations 
satisfied by the tensor a for the three rheological models that we are examining and 
present the linearized equations that govern disturbances to the steady base flow. 

[ 

3.1. The Oldroyd-B model 
The Oldroyd-B model describes well the behaviour of polymeric liquids composed of 
a low concentration of high-molecular-weight polymer in a very viscous Newtonian 
solvent at moderate shear rates. These fluids have come to be known as Boger fluids. 
Data on well-characterized Boger fluids are available (Boger 1977; Mackay & Boger 
I987), allowing a comparison of theoretical predictions with experimental results. The 
Oldroyd-B rheological equations can be derived from a molecular model in which the 
polymer molecule is idealized as a Hookean spring connecting two Brownian beads 
(Bird et al. 1987). 

The tensor a satisfies the upper convected Maxwell equation 

v 
ha+a = y ,  

is the upper-convected derivative of a, and h is the polymer relaxation time. 
The Oldroyd-B model contains both the upper-convected Maxwell fluid (ys = 0- 

K = 0)  and the Newtonian fluid ( y p  = 0 o K = 1). This model gives a reasonably good 
qualitative description of dilute polymer solutions. It predicts no shear thinning, and 
a constant first normal stress coefficient, !PI = 2hyp. It also predicts a zero second 
normal stress coefficient Y,. 

The expression for the base-state tensor a is 

ayl(y) = 2Wew& ay,(y) = -wo, at,(y) = 0. (13) 

Expressing all the variables in terms of the streamfunction disturbance $ and arranging 
the expressions, we obtain the following equation : 

(14) 
1 - K  1 SRe ,=’ 

K ia{(U, - c) (D2 - 2) - D 2 q )  --(D2 - a2)2 q5 = - C b, Dn$, 
Re 
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D3S (D2S)2 
S S 

4(DS) -- 3 ___ 
s- 1 s2+ 1 

~CL~(DS)~-- b,(y) = a4+D4S-aa2(D2S)-- 

s- 1 
(DS)4 6(D2S) (DS)’- s2 ’ +4-- 

S2 

S2 S 

s- 1 (S -  1)2 s- 1 s-1 
4(DS)3 ~ + 2 ( ~ 3 ~ ) - ,  (15) 

S2 
b,(y) = -2a2(DS)-+4(D2S) ( D S ’ ) T -  

S S 

where S = 1 +ia We(V,- c) and D = d/dy, with the boundary conditions 

(1 6) I $ + O  as y++co, 
D$+O as y + * m .  

In the limit of an inviscid flow, i.e. Re +a, the right-hand-side term in (14) is negligible, 
implying no effect of viscoelasticity on the inviscid modes, unless the Weissenberg 
number is also taken to infinity in such a way that the ratio E = We/& = h / S 2  known 
as the elasticity number, is of order 1. The elasticity number may be regarded as the 
ratio of elastic to viscous relaxation times. This special limit means that the polymer 
relaxes as slowly as vorticity diffuses in the flow. In this distinguished limit, the 
resulting equation takes the following form : 

(17) 
where &(y)  = U,(wy)-c and G, not to be confused with the elastic modulus, is 
(1 - K )  We/& = (1 -K) E. 

Equation (17) can be written in the compact form 

together with the boundary conditions 

$ + O  as y-++co, (19) 
with Wi = Vi-2GV:. Equation (18) is a modified Rayleigh equation governing the 
inviscid modes in the strongly elastic limit. 

3.2. Corotational Jefreys model 
This model is obtained by formulating the rheological equations of state in a frame that 
translates with the fluid and rotates with the local angular velocity of the fluid. It 
predicts shear thinning and a non-zero second normal stress coefficient, behaviour that 
is exhibited by fluids at higher shear rates (Bird et al. 1987). For this model, the tensor 
a satisfies the following differential equation : 

h i + a  = y ,  (20) 
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(21) 
aa 

where a = - + ~ ~ ~ a - - ~ ( ~ & . a + a . t , . , )  at 

is the corotational or Jaumann derivative of a and 

is the vorticity tensor. The base-state components of the tensor a are 

In contrast to the Oldroyd-B model, the base-state stresses do not grow indefinitely 
with We. As a result, we can see from (10) that in the inviscid limit, the polymer stress 
equations and the momentum equations are decoupled for any value of the 
Weissenberg number. Thus any possible viscoelastic effect will not persist as Re +co 
and in fact can be shown to be maximal at Re - We N 1. For the viscous case, i.e. finite 
Re, we extended the classical Orr-Sommerfeld analysis to include the viscoelastic 
contribution described by the corotational Jeffreys model. We obtained the following 
modified Orr-Sommerfeld equation : 

4 

JnDnq5 = 0 
n=o 

with the boundary conditions (16). The coefficients J, are given in Appendix C. 

3.3 .  Giesekus model 
This model, introduced by Giesekus (1982), is based on the concept of a deformation- 
dependent tensorial mobility of dissolved molecules. It gives a better description of 
polymeric solutions and melts than the previous two rheological models. It enables a 
qualitative description of a number of well-known properties of viscoelastic fluids, 
namely shear thinning, non-zero second normal stress coefficient and stress overshoot 
in transient shear flows: see Giesekus (1983), Larson (1988) and Bris, Armstrong & 
Brown (1986). In addition to the Weissenberg number, this model is characterized by 
a dimensionless parameter, S, known as the mobility factor. Bird et al. (1987) and 
Schleiniger & Weinacht (1991) noted that realistic behaviour is usually observed for 
0 < s < 0.5. The tensor a satisfies the following equation: 

v 
ha+a+hs(a-a) = 

u 
where a is defined above. For s = 0, the Giesekus model reduces to the Oldroyd-B 

model. In $ 5  we discuss in detail the relation between these two models. 
Because of the quadratic term, the base-state stress tensor for a shear flow is more 

difficult to obtain. The base-state equations for the stress a are 

Let CQ = s W ~ U ; ~  and [ (y)  = Wew,(y). The system (26) reduces to 

(27) 
c:1" + cy: + CYl + 24 ,  < = 0, c;," + c:," + C i z  = o,\ 

1 cy,<c;, + c;2 + 1) + C i 2  6 = - s6. 
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To solve this system of nonlinear equations for c:~, we followed the approach used by 
Giesekus (1982), resulting in the following expressions for the base-state stress 
components : 

where 

Note that A = 1 if s = 0 or s = 1. 
We note that the base-state stresses do not grow indefinitely with W e  when s =k 0. As 

a result, we again see from (10) that in the inviscid limit ( R e 4 c o ) ,  the polymer stress 
equations and the momentum equations are decoupled for any value of the 
Weissenberg number. For the viscous case, we extend the classical Orr-Sommerfeld 
analysis for finite Re to include the viscoelastic contribution described by the Giesekus 
model. We obtained the following modified On-Sommerfeld equation : 

4 

C G,D”$ = 0 
n=o 

with the boundary conditions (16). Appendix D gives the detailed algebra and 
expressions for the coefficients G,. 

4. Solution of the eigenvalue problem 
We used two methods to solve the linearized problem with the appropriate boundary 

conditions. The first one consists of an iterative method based on orthogonal shooting 
which is described in the following subsection. In the second method, we solved the 
linearized vorticity and polymer stress equations using finite differences (Drazin & Reid 
1981). The eigenvalues are obtained by a standard QR algorithm and we tested their 
accuracy by refining the mesh and varying the width of the domain. We used double- 
precision arithmetic which allowed computation of even weakly amplified unstable 
modes. Once we found the eigenvalues, we obtained the eigenfunctions by integrating 
backward in the case of the orthogonal shooting method. The eigenfunctions are 
normalized so that the maximum absolute value of Re($) at y = 0 is 1. 

4.1. Iterative method 
Following the procedure of Tatsumi & Gotoh (1959) it is possible to show that, if for 
every a and G there is a unique eigenfunction 9, then 

Re(c) = c, = i[U,( + m) + U,( - a)] = 1, (3 1) 

and the instability wave travels with the mean velocity. This result was verified by the 
finite difference method which makes no a pviori assumption about e,. In fact the finite 
difference results show that for all the eigenvalue problems we solve, c, = 1 for the 
largest Im(c) = ci. 

The eigenvalue problem can be written in the compact form 

F(q5, $’, q5”, $”’, q5iv, a, s ,  ci ,  Re,  We ,  U,) = 0, (32) 
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together with the boundary conditions 

We assume, following the usual Newtonian development, that 4, is an even function 
of y while $? is an odd function of y. Thus the domain of integration is limited to the 
upper half of the flow. We transform the system of two fourth-order differential 
equations (second order in the inviscid case) relating Q, and Qi into a system of eight 
(four in the inviscid case) first-order differential equations with the following boundary 
conditions : 

DQr = 0, Q? = 0 at y = 0, 

D ~ , = O ,  DQi=O as .V+OO, 

D3r$r = 0, D2Qi = 0 at y =  0, 

q5r = 0, q5i = 0 as y+cc. 

The method we used to solve this eigenvalue problem is orthogonal shooting based on 
the original idea of Conte (1966). We start with four (two in the inviscid case) 
independent initial solutions satisfying the boundary conditions at y = & (an 
approximation to a) : 

(34) 1 
Q;’ = (&, Q:, D&, Dd;, D2&, D2&, D’Q;, D”Q]) = (0, O,O, 0, 1,0,0,0), 

9;’ = (Q:, Q:, D#J:, D$;, D’Q;, D2QQ,”,D3Qf. D‘QQf) = (0,0, O,O, 0, 1,0,0), 

v3 = (#,&, D&, D#, D2@, D’&, D3#, D3&) = (O,O, O,0, O,O,  1,0), 

y4 = (&, &, DQ:, DQ:, D2@, D’&, D3#, D3&) = (0, 0, 0, 0, 0, 0, 0, 1). 

We assume a value for the eigenvalue ct and then integrate these four vectors across 
the domain, from y = & to y = 0: the solution may be taken as a linear combination 
of cp’, p2, (p3 and 9 ~ ~ .  At each step in the integration we check the inner product between 
these four solutions to determine whether they are nearly linearly dependent. If they 
are, we apply an orthonormalization procedure and continue the integration. At y = 
0, we check if the corresponding boundary Conditions are satisfied, which is equivalent 
to checking if the determinant: 

] (35) 

If so, the eigenvalue is correct; if not, a new guess for the eigenvalue is used and the 
process is repeated. We use a modified Newton-Raphson method to determine 
successive iterates for ci .  Various checks were performed on the calculated eigenvalues 
through taking larger values of and refining the integration grid. We also verified 
that we could reproduce well-known calculations for a Newtonian fluid (Betchov & 
Szewczyk 1963 and Michalke 1964). 

5. Results 
5.1. Oldroyd-B model 

The eigenvalue problem for the inviscid mixing layer described by the Oldroyd-B 
model (17) is of primary interest, as it indicates a modification of the inviscid modes 
associated with vorticity stratification. In figure 2 we present the rcsults of our 
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g~ 10-3 

a 

FIGURE 2. Instability characteristics for the inviscid Oldroyd-B for moderate G. 

numerical calculations. In these curves we plot the growth rate of the disturbance cr = 
aci versus the wavenumber a with G as a parameter. The curve G = 0 corresponds to 
the Newtonian limit and reproduces the inviscid results of Michalke (1964). As we see, 
the inviscid mixing layer is less unstable in the presence of viscoelastic additives, and 
as G is increased, the region of unstable wavenumbers is reduced from that of the 
inviscid inelastic flow and the entire unstable spectrum is shifted towards longer waves. 
Furthermore, the maximum growth rate is reduced, suggesting that there is a 
mechanism of elastic stabilization that we shall discuss below and in Appendix E by 
E. J. Hinch. The second conclusion from these results is that viscoelasticity reduces but 
does not suppress totally the instability. Even for very large values of G, the flow 
remains unstable to long waves, as shown in figure 3. This conclusion was checked 
through an asymptotic analysis for G >> 1 the results of which are presented in the next 
subsection. 

5.1.1. Asymptotic analysis 
The results of our linear inviscid stability analysis show conclusively that 

viscoelasticity effects are stabilizing. The range of unstable wavenumbers is reduced 
and the growth rate of the disturbance is decreased as G is increased. However, the flow 
apparently does not become totally stable even for very large values of the parameter 
G. The practical implication of this conclusion is that one can obtain an asymptotic 
expansion of both the maximum growth rate umaz and the corresponding wavenumber 
ala, in terms of G. 

Tbe approach we follow is similar to that used by Drazin & Howard (1962). The 
reader interested in a full discussion of the method and in proofs of convergence for 
the series should refer to this article. As y + + GO or y --f - ao, (18) has two asymptotic 
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FIGURE 3. Instability characteristics for the inviscid Oldroyd-€3 for large G. 

solutions, respectively e-OLY and e+ay. Our approach is as follows: we seek the solution 
of (18) in the form 

x and B are expanded into power series in a :  
$,(Y) = e-""x(v) (Y ' 01, $,(Y> = e + n u o )  (Y < 0). (36) 

i.e. (39) 

In the subsequent analysis, we will obtain results for x. The corresponding results for 
8 can be obtained in a similar way except for certain obvious changes of sign that 
will be pointed out. When (36) is inserted into (18), we obtain the following equation 

The same equation with a replaced by -a  holds for 0. Substituting the power series 
for x into (40) gives the following recurrence: 



48 J .  Azaiez and G. M .  Homsy 

The same recurrence is obtained for 8,. With the normalization x(m) = V,, we obtain 
the successive determination of the 2,: 

x o  = 5, I 

Analogous expressions are obtained for 8, except that in the limits of integration + co 
is replaced by - co. 

The normalization of x and B does not imply that ~ ( 0 )  = O(0); thus if, for y > 0, the 
eigenfunction is taken as e-"gx(y) then its continuation to y < 0 must be a multiple of 

(43) 

e"V(y),  i.e. we must have 

where Kmay be a function of 01 and c. Eliminating K between these two equations gives 

(44) 
This equation is an eigenvalue relation between a and c. Writing (44) in terms of the 
expansion and inserting the expressions for X ,  and On from (42), we obtain to O(a3) 

I x(0) = Kmo7 
X'(0) - = ad'@) + aO(O)I7 

q o )  xyo) - x(o) oyo) - 2ae(0) x(o) = 0. 

+ ...} = 0. (45) 

xo = V, is O(1) as G-tco, and using (42) it is easy to show that xn is O(1) as G - t a  for 
any n 3 1. The same results can be obtained for On. When we insert the expansion 
ci = co + ac, + a2c2 + . . . in (45) we obtain the following equation : 

- 2a( 1 - ci) -a2 (- 4co el + J:I [ (s-iiCo)' -2G(1 - s ~ ) ~  - 2(1- ci) 

] *) + 2a3(c; + 2c, co +f(G)) + O(a4) = 0. (46) 
(1 + ci)' 

(s - ic,)' - 2G( 1 - s")* 1 - s2 
+ 

In (46),f(G) is a function involving integrals over the domain [ - I ,  11 spanned by the 
variable s = tanh(y), and can be shown to be O(G) as G+m. From (46) we obtain the 
following results : 

c; = 1 

(47) cot, == -E-L+j" 
c0 c2 

1 +2G(1 -s2)ds 
3 2 -l (1  -s2)>"(1 +2G(1 - S ' ) ) ' + ~ S ~ '  

- ~ c T  - i f lG) .  
Keeping in mind the fact that X ,  and On are O(1) and f lG) is O(G) as G+a,  we 
obtain the following expansions valid for small wavenumbers a and large G satisfying 
a G 4  1: 

(48) 
which leads to the following expansions for the maximum growth rate and the 
corresponding wavenumber : 

c 5 -  - 1 -'GO! 3 -;(Ga)' + . . . , 

cmaz = 0.53[(~)~-1]G-1+ ..., 
= [($- I] G-l+ . . . . (49) 
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FIGURE 4. Comparison of asymptotic and numerical results for (a) gmmaz, and (b) a,gmaz. 

6 

FIGURE 5. Correlation of the streamwise and transverse velocity perturbations. 

In figures 4(a) and 4(b)  we show the variations of the maximum growth rate and the 
corresponding wavenumber as functions of the parameter G. Owing to restrictions 
from the numerical calculations, the maximum value of G is limited to 150. The 
agreement between the results of the asymptotic analysis and those of the numerical 
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calculations is satisfactory and should improve for larger G. In Appendix E, Dr E. J. 
Hinch adopts an elastic membrane model for long waves which not only reproduces the 
above results but gives insight into the operative physical mechanisms. 

The limit We B 1 is obtained either when h+co (the highly elastic fluid limit) 
or 6+0 (the vortex sheet limit). As we have seen earlier, in the special limit Re $= 1, 
We % 1 and We/Re = 0(1), c, = 1 for long-wave perturbations (a+O) at any finite 
value of G .  As a consequence, we conclude that the instability of a vortex sheet is not 
affected by the presence of viscoelasticity. This different behaviour in the case of a 
vortex sheet can be explained by the high shear rate at the interface of the two flows. 
The long-chained polymer is straightened in the flow direction by the very strong shear 
rate and will not change the dynamics of the flow, at least in the early stages where the 
linear stability assumptions hold. 

5.1.2. Mechanisms of stabilization 
The results obtained for the Oldroyd-B rheological equation show that there is an 

elastic stabilization mechanism of the inviscid mixing layer. In the special limit Re +a, 
We/Re = O( l), the driving terms in the stress equations are those involving the base- 
state normal stress a!l = 2Wewi. The rates of accumulation of the normal stress 
perturbation a,, and the shear stress perturbation u12 arise solely from the interaction 
between a:, and the perturbation velocity field. This can be seen from the linearized 
versions of (12): 

In order to characterize the effect of the presence of viscoelasticity on the flow, we plot 
the variations of the magnitude of the vorticity disturbance. We also examined the 
correlation between the streamwise and the transverse components of the velocity 
disturbance. 

All the figures presented in this section are plotted for various values of G at the 
wavenumber corresponding to the maximum growth rate. Figure 5 depicts the 
variation of the angle 0 that the velocity disturbance vector makes with the streamwise 
direction. 0 is an indication of the relative strength of the transverse fluctuations. In this 
figure we also plot the base-state velocity q ( y )  to show the extent of the mixing region. 
In the inviscid limit (G = 0), 0 increases within the mixing region (Iyl < 1). This reflects 
the starting of the roll-up. In the case of the elastic fluid (G = 1 and 5) ,  the growth of 
0 is quite weak within the mixing region but becomes important outside it where the 
fluid is essentially moving at the free-stream velocity. This suggests that in the non- 
Newtonian case, the dynamical effects of the disturbance on the base state are 
negligible when compared to the Newtonian case. 

This conclusion is confirmed by looking at the magnitude of the vorticity disturbance 
(figure 6). Because the eigenfunctions have been arbitrarily normalized, only the trends 
in this plot should be considered significant. Figure 6 shows that in the limit of an 
inviscid fluid, the region of maximum magnitude of vorticity production is 0 < y < 1. 
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FIGURE 6. Variation of the magnitude of the vorticity disturbance. 

I 

FIGURE 7. Contours of the rate of production of vorticity: (u) a = 0.44, G = 0; (6) a = 0.30, 
G = 1 ;  (c )  a = 0.12, G = 4; (d )  cc = 0.06, G = 10. 

However, for the non-Newtonian mixing layer, the maximum vorticity production 
occurs for y 2 I. More insight about the mechanisms of stabilization can be gained by 
examining the distribution of the velocity and the rate of production of vorticity. In the 
following figures, the dotted contours correspond to negative values and the continuous 
ones represent positive values. 

Figure 7 shows the rate of accumulation of the vorticity disturbance as obtained 
from the linearized equation for the vorticity : 
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(iil (iiil 

FIGURE 8. Contours of the velocity perturbations: (a) streamwise velocity disturbance, u ;  (b)  
transverse velocity disturbance, 21; (i) CL = 0.45, G = 0: (ii) CL = 0.30, G = 1; (iii) CL = 0.10, G = 5 .  

We see that in the limit of an inviscid fluid (G = 0), there are two distinct regions. 
In the first one, in the downstream half-wavelength, the rate of production of vorticity 
is negative in the upper flow and positive in the lower flow. Keeping in mind that the 
base-state vorticity is negative, we conclude that the upper flow has a higher vorticity 
than the lower one and tends to roll into the lower part. The opposite trend is taking 
place in the upstream half-wavelength where the lower part of the flow tends to roll into 
the upper part. This is obviously the starting of the well-known mechanism of roll-up. 
As G increases, the extent of these two regions where the rate of production of vorticity 
has different signs in the upper and lower parts of the flow is significantly decreased. 
This is due to the introduction of a spatial phase shift due to finite elasticity and 
suggests that the roll-up will be slower to appear in the case of an elastic flow. 

These conclusions are confirmed by considering the velocity contours (figure 8). In 
the inviscid case, there is a region in the middle of the domain where the streamwise 
velocity perturbation ZI is positive in the upper part of the flow and negative in the lower 
part. This has the effect of increasing the local vorticity and corresponds to the roll-up. 
This remark is verified by looking at contours of u (figure 8b) : the flow tends to move 
up in the right half of the figure and down in the left half. For G = 5 ,  the velocity 
perturbation u is almost zero in the middle of the domain while elsewhere it has the 
same sign in both the upper and lower streams. By examining the contours for v, one 
may surmise that the flow tends to roll-up rather slowly. These predictions conform 
with the experimental results obtained by Hibberd ef a/. (1982) and Riediger (1989) 
who noticed that the formation of the typical structures of a plane mixing layer is 
delayed in the presence of polymer additives and inhibited when a surfactant is added 
to the flow. 

5.2. Corotatiorznl Jeffreyls model 
The modified Orr-Sommerfeld equation for the corotational Jeffreys model was solved 
using orthogonal shooting as described in 54. We carried out the calculations for a 
fixed value of K = 0.5 and two values of the Reynolds number: Re = 100 and 400. 
Figures 9(n) and 9(h) depict the variations of the growth rates with the wavenumber 
of the disturbance for various values of the Weissenberg number We. We find that the 
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FIGURE 9. Instability characteristics for the corotational Jeffreys model for (a) Re = 100, 
(b) Re = 400. 
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FIGURE 10(a,b). For caption see facing page. 
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FIGURE 10. Instability characteristics for the Giesekus model for (a) s = 
(6) s = 0.3, Re = 100; (c )  s = 0.01, Re = 100. K = 0.5. 

Re = lo4; 

overall behaviour of the instability is unchanged as compared to the Newtonian limit 
and the trend is toward the inviscid case for all W e  as Re increases. Furthermore, there 
is little variation with the Weissenberg number indicating that the instability is 
insensitive to viscoelastic effects of fluids described by the Jeffreys model for this range 
of parameters. When compared to the previous results, this contrasting behaviour 
confirms our idea that the effect of viscoelasticity depends critically on how the base- 
state first and second normal stresses behave as a function of We. 

5.3. Giesekus model 
The modified Orr-Sommerfeld code for the Giesekus model was checked by 
reproducing the dispersion curves in the limit of a purely Newtonian fluid ( K  = 1). A 
more stringent check was done by reproducing the results for the inviscid mixing layer 
described by the Oldroyd-B model (S = 0, Re+m and We+co). For this purpose 
we fixed s = and Re = lo4. Figure lO(a) shows the characteristic curves for 
various values of We. By comparison with figure 2, it is obvious that it provides a good 
correspondence with the inviscid results obtained for the Oldroyd-B model. 

Figures 10(b) and 1O(c) display the instability characteristics for s = 0.3 and 0.01. 
We note that for these values of the mobility factor, viscoelasticity does not seem to 
have a significant effect on the stability of the flow. Varying W e  results in either slight 
stabilization or destabilization, but the shifts from the Newtonian case are always 
small. For smaller values of s (lop4 and lo-') the instability of the flow is decreased as 
W e  is increased. However, beyond a limiting value of the Weissenberg number We,, 
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depending upon 5, this trend of stabilization is reversed. Figures Il(a) and l l (b)  
illustrate this non-monotonic dependence on We. 

5.3.1. The limit s = 0 

(28) one can obtain expressions of the first and second normal stresses: 
For s identically equal to zero, the model reduces to the Oldroyd-B equation. From 

I 1-A2 
N," = - a!2 = 

id We[l+(1-2s)A]' 

We[l+(l -s)A] '  
A - 1  - N," = a& - 

It is revealing to examine closely the expression for A in (29). The parameter s appears 
in the form of the product sWe, so, in order to recover the Oldroyd-B limit it is 
insufficient to take the limit s --f 0 independently of the values of s We. We examine the 
two cases that arise when s + 0 : 

Case A :  s+O and sWe 4 1 
From (29) we obtain 

A' = 1 -4~We~04+o(sWe~) .  (53) 

Inserting this expression in (52) yields 

N,O = 2Wew;+O(s), N," = -sWewi+o(s), (54) 

which, in the limit s --f 0, corresponds to the first and second normal stresses predicted 
by the Oldroyd-B model. 

Case B:  s+O and sWe % 1 
In this limit (29) gives 

Inserting this expression in (52) we obtain 

For We sufficiently large, N," N 0 while N," N Jwoli. In this limit, the stabilizing effect 
tends to disappear and the spectrum of unstable wavenumbers starts getting larger. The 
stabilizing trend is reversed for a critical Weissenberg number We, for which N: - We. 
From the expression for NP in (56) this gives ?We: = O(1), which is in quantitative 
agreement with the results in figure 11. For even larger values of We, N i  - 0 and 
N;  - 0, and the characteristic curve tends towards the Newtonian limit. 

This analysis and results such as those of figures ll(a) and I l (b)  suggest the 
conjecture that as We is increased for a fixed mobility factor S, the first normal stress 
N! approaches the value Wew,, and the instability of the flow is reduced. The 
stabilizing effect then diminishes for values of the Weissenberg number larger than We, 
since the base-state normal stresses tend to zero and the flow behaves like a Newtonian 
mixing layer. This suggests that, for a given fluid, there may exist an optimal degree of 
stabilization which is reached at a particular speed. 
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FIGURE 11. Instability characteristics for the Giesekus model for (a) s = lo-', Re = 100; 
(b) s = lo-*, Re = 1000. x = 0.5. 
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6. Discussion 
The linear stability analysis for the plane inviscid mixing layer of a viscoelastic fluid 

has yielded an explanation of the mechanisms through which viscoelasticity affects the 
instability. 

In particular, the presence of elasticity with a relaxation time comparable in 
magnitude with viscous diffusion time significantly reduces the instability for a fluid 
described by the Oldroyd-B model. This effect is characterized by a dimensionless 
parameter G proportional to the elasticity number. An increase of G leads to a 
reduction of the growth rate of the disturbance and a shift of the spectrum of unstable 
wavenumbers towards long waves. It seems, however, that viscoelasticity does not 
totally stabilize the flow. The results of the asymptotic analysis show that both the 
growth rate and the unstable wavenumber vary as G-l for G + 1 .  

By examining the contours of the velocity and the vorticity disturbances and 
analysing the spatial distribution of the transverse fluctuations, we conclude that 
viscoelasticity may lead to a delay in the formation of the typical structures of a plane 
mixing layer. This conclusion conforms with the observations reported by Hibberd et 
al. (1982) and Riediger (1989). 

Viscoelastic fluids described by the Giesekus or the corotational Jeffreys models do 
not exhibit changes in the stability of the inviscid mixing layer. When the Reynolds 
number is finite, the results of the extension of the classical Orr-Sommerfeld analysis 
to both of these rheological models showed that for the corotational Jeffreys model 
there are no significant changes compared to the Newtonian fluid. The Giesekus model, 
which reduces to the Oldroyd-B model in the limit s = 0, showed a special behaviour 
for small but non-zero values of the mobility factor s. The flow tends to be stabilized 
as long as s We is very small. When s We increases, the stabilizing effect is reversed and 
the instability characteristic tends to the Newtonian limit as We exceeds Wec - O(s-'). 

The different behaviour of the three models in the inviscid limit (Re+co) is 
attributed to the nature of the base-state normal stress. The interactions between the 
base-flow normal stress ayl and the velocity field disturbances are the driving factors 
for the reduction of the instability of the flow, and it is necessary that ayl grows like 
We over some range of shear rate in order to see any stabilizing effect. This conclusion 
was confirmed by the study of the limit s+O for the Giesekus model. 

This work was supported in part by NASA-Ames through the Center for Turbulence 
Research at Stanford under Grant No. 2DJA46994144 and by the US Department of 
Energy, Office of Basic Energy Sciences. We acknowledge helpful discussions with 
Professor E. J. Hinch made possible through NATO Travel Grant 900458CBG. 

Appendix A. Correction to the laminar Newtonian flow in the limit of an 
inviscid highly elastic fluid 

and the constitutive equations for the Oldroyd-B model are respectively 
For steady flows, the two-dimensional form of the equations of motion, continuity 

uu,+vu, = -P,+~~/~e)(u~,+~,,)+[(~-K)/~el(~*,,.+~l,,,), (A 1 4  
uvx+vv, = -Py+(K/Re)(vxx+ ~ , , > + [ ( ~ - ~ ~ / ~ ~ 1 ~ ~ 1 2 , , + ~ 2 2 , , ~ ~  (A 1b) 

(A 1 4  

(A 1 4  

u,+ vy = 0, 

a,, + We D(a,,) = 2We(a11 u,+ a,, u,) + 2ux, 
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a,, + We D(a,,) = 2 We(a,, v,+ a,, vv) + 2v,, 

a12 + We D(a,,) = We(a,, v,+ uZ2 u,,) + (uy + v,), 
where Re is the Reynolds number, We the Weissenberg number, K = h,/h and D is the 
convective operator (u8,+ vC:,,). The variables in the above equations are already 
dimensionless. In the mixin la er, we use the following scaling: y = y / s ,  x = x, v = v/e 
and u = u where e = l/ReX. 

Let aij = Web,, E = We/Re = e2 We and G = (1 - K )  E. The previous equations are 
recast in the form 

B Y  

uu,+vuy = -P:~+~E”~, ,+~yU/~:2)+G(bl , , .+b, , , y /~) ,  (A 2 4  

(A 2b) 

u,+vy = 0, (A2 c> 

(A 2 4  

(A 2 4  

(A 2f) 

~(uu) ,  + VV,) = - p y / ~  + K ~ ~ ( v , ,  + V , , / E ~ )  + G(b,,,, + bsa,,/E), 

b,, + We D(b,,) = 2We(b,, u, + b,, u,/E) + (2/ We)  u,, 

b2, + We Dih,,) = 2 We(eb,, v,  + b,, ti,) + (2/ We) v,, 

1 
We 

b,, + We Dib,,) = We(eb,, V ,  + b,, u J e )  + __ (uY/e + E V J .  

Let b,, = b:, E and b,, = b,*, e2, then 

MU, + my = - p ,  + K U ~ ~  + G(b,,,, + bT2) + K F ’ U , ~ ,  (A 3 4  

(A 3 b)  

(A 3c) 

(A 3 4  

(A 3 4  

(A 3n 

E(UV,  + VV,) = -py/e + K ~ u ~ ~  + Ge(b,,, + b:,) + K E ~ V , ,  -py/e, 

24, + v, = 0, 

bll + ( E / e 2 )  D(bll) = ~ ( E / E ’ )  (b,, u, + bT2 uy) + ( 2 2 / E )  us, 

b,*, + (El&’) D(bz2) = 2(E/&’) (b:, u,+ b& vY) + ( 2 / E )  v,, 

h& + (E/e2) D(h&) = ( E / e 2 )  (b,, V ,  + b;, uY) + ( 1 / E )  (uy + E~v,). 

We use the similarity variable, y = y / d ,  and take the streamfunction, to the first order, 
equal to 1C.O = E xif(a).  The corresponding streamwise and transverse velocities are 

uo = f’(y), vo = (y.T(q) - . K V ) ) / ( 2 X 9 .  (A 4) 

Note that from the momentum equation for u we have p y  = 0 + O(e2). 
The next step is the (usual tentative) expansion of the variables: 

(A 5 4  b) 
A(?) B(V) u = uO+e2----+o(s2), 1) = 2;0+e2T+n(E~), 
X XT 

h, I ,  g and f satisfy the following equations: 

2(1 - ~ ) E w - ~ h ’ ) + 2 ~ f ” ’ + f f N  = 0, Jh’ = 2f”(qh-g), (A 6a,  b) 

(A 6 4  

(A 6 4  

- (21f‘ +fl’) = 27lf” + g ( f -  77 - $.f”), 

- ( f ’g  +fg’) = 2lf” + h ( f -  ‘ r f ’  - y’f”), 
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f ( O ) = O ,  f ’ ( + C O ) = l ,  f ’(-a)=-1, 

h’(0) = g’(0) = Z’(0) = 0, 

y(A 6 d )  - (A 6 ~ )  + : (qh -g) (f- yf’ - y’?) = 2ff‘ +fl’ - y(fg)’. 

Let X = yh-g;  then the system of differential equations reads 

2( 1 - K )  E(X’ - h) + 2Kf”’ +ff” = 0, (A 8 4  

(A 8b) 

(A 8 4  

(A 8 4  

f h’ = 2 X f ,  

X ( f -  y . 7  - y”) = 21f’ + f 1’ - q(,f(yh - X))’, 

- ( f lqh  - X))’ = 21f” + hcf- 6‘ - 7”). 

2~ f ” ’  + ( 1  + 2G)ff” = 0 

The solution of this system is given by 

(A 9 4  
X=j’f’, h = f ”  9 1 = i(J” + y 2 . f 2  - 2 r . m  (A 9 k d )  

with the boundary condition: f(0) = 0, f’( + a> = 1, f’( - a) = - 1. The Newtonian 
limit is accessible by allowing K to go to 1 (no polymer viscosity) and it is easy to verify 
that the limit ( K  = 1 * G = 0) gives the Blasius equation. 

If we define g such thatf(7) = g{[(2G + 1 ) / 4  71, then g satisfies the Blasius equation 
and thus the solution of the differential equation for f can be mapped to the Blasius 
solution for 0 < K < 1. 
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Using the usual normal-mode analysis : Q = qo( y) + q( y)  e(iax+flz'r-act) and letting D = 
dldy we have 

ia(U,-c)u+ Ubu = -iap+G(iab,,+b~,+ipb,,), (B 3 4  
(B 3b) 
(B 3 4  

iau+Dv+pw = 0, (B 3 4  
(B 3e) 
(B 3 f )  
(B 3 g )  

ia( U, - c) u = - Dp + G(iab,, + b& + ipb,,), 
ia( U, - c) w = - ipp + G(iab,, + bia + ipb,,), 

ia( U, - c) b,, = iaby, v + U{ bZ2, 
ia( U, - c) b,, = iaby, w + Ui b32, 

& = (a"+2)i, 26 = au+pw, 6 = u ;  (B 4 4  
OI& =PI.., (B 4b) 

G"= G, (B 4 4  

ia( U, - c) b,, + b;; v = 2iaby, u+ 2Ui b12, 

ia( U, - c) b,, = 0, ia( U, - c) b,, = 0, ia( U, - c) b,, = 0, (€3 3 h-j) 
with the boundary conditions : v + 0 as y --f 5 GO. Let 

kb",, = a'b,, + 2/3ab1,+ p 2  b,,, = ab,, + /i'b23, b2J& = b,,/a, (B 4c)  

then the system of equations (B 3) can be combined to give the equivalent two- 
dimensional problem : 

i&(U,-e)ii+ U ~ C  = -iiij+G(i~ib",,+b"~,), (B 5 4  
i&(V,-c)v" = -D~+~(i&b",,+b"~,),  (B 5b) 

(B 5c)  
i&(U,--c)bl1+b;iv" = 2iBb~,6+2U~b",,, (B 5 4  

iL(U,-c)b",, = iZ&fi+ ~ h b " ~ ~ ,  (B 5 e )  
i & ( q - ~ ) b " ~ ~  = 0, (B 5 f )  

iEii + Dv" = 0, 

with the boundary conditions v" --f 0 as y --f +_ 03. 

Thus we see that the linear theory for the inviscid viscoelastic mixing layer described 
by the Oldroyd+B rheological model in the special limit We/Re = O(1) does not 
distinguish between two- and three-dimensional modes. This is, as far as we know, a 
new result equivalent to the fact that the Rayleigh stability equation holds equally for 
two- and three-dimensional modes. Furthermore, it is possible to show (Azaiez 1993) 
that a Squire's transformation exists for the viscous three-dimensional equations for 
the Oldroyd-B model; however, no theorem can be proven because there exist viscous 
modes where the growth rates depend upon viscosity, elasticity and first normal stress 
levels in different ways. 

Appendix C. Derivation of stability equations for the corotational Jeffreys 
model 

The linearized equations for the corotational Jeffreys model are 

ia((U,-c)(D2-a~)-DD2U,)--(D2-a2)2 Q = --[(D2+aa") a,,+iaD(u,,-a,,)], 1 l;: 
K 

Re 

(C l a )  
(C 1b) 
(C 1c) 
(C 1 4  

So a,, = [(D' + a2) + ia We u;; + We .;,(az - Dz)] q5 - w0 We $(azz - a,,), 
So a,, = [2iaD + ia  We u!; - a;2 We(a2 - D')] Q - wo We a,,, 
So a', = [ - 2iaD + ia We a& + ay2 We(a2 - D')] Q + wo We a12, 

3 FLM 268 
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where S, = 1 +iaWe(U,-c) and D = d/dy. Note that we have used the relation 
ui2 = -ayl. Subtracting (C I d )  from (C Ic) yields 

(C 2) 
[a!, We D2 + 2iaD + We HI 

u22-i.lll = -2 + + 20, w e  5. 
s o  so 

Inserting (C 2) into (C 1 b) gives 

[a!, We D2 + 2iaD + We HI 4, (C 3 
so oo We 
T 

U I 2  =-["D2+P]$+- 

where 
N = 1 - We a!l, 

P = We(iaayi + a2u;,) + a2, 

H = iaayi - a2a;,, 

T = S,2 + 0: We2. 

Using (C 3) and (C 4) in the vorticity equation leads to the following modified 
Orr-Sommerfeld equation : 

4 

E 4 D i $ = 0 ,  
i=o 

where 

(C 5 4  
a 4 K  1 - K  

J ,  = ia3( V, - c) + - - iawh + __ [(K" + a2K) + ia  W e ( F  - Q')],  
Re Re 

J=--  -' [2K' + 2ia We(M"+ a2M)  -ia We(Q + 2ia WeL'-F) + 2 - 
Re 

J ,  = (X"+aZX)+K+4ia WeM'+ia We 

1 a2 

s o  
-2--i(x WeR'+2a2 We2 L , 

X .  
K 1-K J4 = -+- 

Re Re 

In these equations we have set 
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Appendix D. Derivation of stability equations for the Giesekus model 
The linearized equations for the Giesekus model are 

K 
[ia{(Q - c) ( ~ 2  - - D~&u,> -- ( ~ 2 -  a.p] 4 

Re 

1-K -- - [(D2 + a,) a,, +iaD(a,, - a22)], ( D  1 a) Re 

So a,, = [(D2 + a2) +ia We a:; + We + We ai2 D2] q5 

+ U; Wea2,-sWea~,(a,,+a,,)-sWea,2(a~l+a~,), (D 1 b) 
So a,, = [2iaD + ia We a:; + 2ia We a:, D + 2 We ay2 D2] q5 

+ 2We U,!, aI2 - 2sWe(ay, a,, + ay2 q2), (D 1 c) 

So a22 = [ - 2iaD + ia We a:; - 2ia We a!, D + 2 W e  a’a:,] 4 

- 2sWe(ai2 a%, + a;, a,,), (D 1 d)  

where So = 1 + ia We( V, - c)  and D = d/dy. The three equations for the tensor a can 
be written in the following form: 

S12 a12 = [F,, D2 + H121 4 + u: We a2, - s We aY2(a11 + a2J ,  

S2, a,, = [G2, D + H,,1 4 - 2s We a12, 

S,, = S,+sWe(a~,+a~,), S,, = So+2sWea:,, 

S,, = S,  + 2s We a:2, 

Sll all = [F,,  D2 + Gll D + H,,] # + 2We U,!, a,, - 2sWe ay2 a12, 

where 

F,, = 1 + We ai2, 

H,,  = a2( 1 + We a!,) + ia W e  a!;, F,, = 2 We 

Hll = in We a?;, G,, = 2ia( 1 + We a:,), 

G,, = - 2ia( 1 + We a:,), H22 = We(2a24, + iaai’,). 

Expressing a,, and a22 in terms of a,, gives the following expressions: 

Subtracting (D 4 4  from (D 4b)  leads to 

Introducing (D 4) into (D 2a) gives 

a12 = (XD2+ZD+P)4,  
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’ I  We( Uh - say,) We( Uh - sa!,) , N =  s We a:, L=----- , M =  
Sll s, 1 s 2 2  

s We  a;, 
Q=- s 2 2  , T = S12+2sWea~, (M+Nj ,  

NG,, - LG,, 
T ’  

, z =  42 - L41 
T 

H12 + NHZZ - LHll , x= 
T 

P =  

When we insert (D 6) and (D 5 )  in the vorticity equation, we obtain the following 
modified Orr-Sommerfeld equation : 

4 

C GiDi$ = 0, 
i = O  

where 

G, = ~ - K  [ (Z”+a’Z) + 2P‘ + 2ia{(M’ + Q’) Z+(M+ Q) (Z’  +P)] 
Re 

[ (x” + a2X) + 22 ’  + P 
a2K (1 - K j  

G, = -ia(4-c)-2-+- 
Re Re 

G, =- 
Re 

K 1-K 
G --+-X. 

4 -  Re Re 

Appendix E. Long-wave instability of a free shear layer of an Oldroyd-B 
fluid 

By E. J ,  Hinch 
Department of Applied Mathematics and Theoretical Physics, University of 

Cambridge, Silver Street, Cambridge CB3 9EW, UK 
In the main body of the paper Azaiez & Homsy have shown that the high-Reynolds- 

number inertial instability of a free shear layer can be partially stabilized by the 
elasticity of a non-Newtonian fluid. They found that only the Oldroyd-B fluid could 
provide the large quadratic normal stresses (tension in the streamlines) comparable 
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with the quadratic Reynolds stresses required for a significant effect at high Reynolds 
numbers, and that then only the long waves are unstable. Now for long waves the 
inertial instability of a free shear layer is described by the Kelvin-Helmholtz instability. 
As the large non-Newtonian stresses are confined to the shear layer, one might 
anticipate that the stabilizing effect of the normal stresses on the long waves is just that 
of an elastic membrane or surface tension on the Kelvin-Helmholtz instability. The 
purpose of this appendix is to analyse this mechanism. 

E. 1. Governing equations 

v * u  = 0, 

p- = -VP+,L~V~U+GV*A+J 

Consider the flow of an Oldroyd-B fluid governed by 

Du 
Dt 

DA 1 
- = A .  VU + VuT* A +- (A -/), 
Dt 7 

where G is the elasticity modulus and 7 the relaxation rate associated with the polymer 
stretch A .  

The basic state is a unidirectional shear layer of thickness 6 and velocity jump 2U0: 

u = (U(y),O) with U =  U,tanh(y/S), 

with polymer stretch 
(1 +2(7U')2 ?U') 

1 '  
A =  

7U' 

A forcefis needed to maintain the basic state. 
We make two approximations : large Reynolds number pUo 6/& + G7) 9 1 to 

concentrate on the inertial instability; and large Weissenberg number Uo7/J % 1 to 
provide the large normal stresses. The large Reynolds number allows one to ignore the 
diffusion of momentum. The large Weissenberg number allows one to ignore the stress 
relaxation during the instability and to take the elastic stress in the basic state as just 
the normal stress GA,,. The equations governing the linear instability are then 

au av -+- = 0, 
ax 2y 

We now look at a linearized instability where all perturbation quantities are 
functions of y and proportional to e" with 0 = ia(x- ct) and with growth rate r = aci. 
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E.2. Inside the thin shear layer 

The elastic stress only exists within the shear layer. Introducing the streamfunction 31. 
with u = V and D = -ia$, we can solve the stress perturbation equations with 

Following standard boundary-layer theory for long thin layers, we consider only the 
x-momentum equation, and set the pressure gradient to zero, because it vanishes to 
leading order outside the layer and it does not vary across the thin layer. Substituting 
in the above solution for the stress, we obtain the momentum equation 

which is an integral of (18) with a = 0. 
This momentum equation has the simple solution (cf. (42)) 

= (U-  C) 7 with constant 7 4 8, 
which gives 

u = U’7, D = - ia(U- c) 7, a,, = A;, 7, a,, = -iaA,, 7. 

This solution can be interpreted just as a vertical displacement of streamlines from yo 
to y = yo - 7 ee with 7 $ 6. Conserving the horizontal velocity in this displacement at 
U(y,) gives in the Eulerian frame a horizontal velocity U( y + 7 e@) = U+ 7 esU’. The 
vertical velocity is given by the statement that in the long-wavelength limit the 
displaced streamlines are effectively material surfaces D b +  7 e@)/Dt = 0, so 
D = - ia( U -  c) 7 ee. The normal elastic stress is displaced vertically with the streamlines 
A,,(y + 7 e@) = A,,(y) + 7 eR& while the shear elastic stress results from the tilt in the 
streamlines a,, = - iaA,, 7. With this simple solution, the normal stress or tension 
along the displaced and tilted streamlines is unchanged, and so there is no need to 
accelerate the fluid along the streamlines. 

E.3. Potentialflow outside the shear layer 
The above solution produces a normal flux out of the shear layer: 

D = -ia(k Uo-c)y. 

This is precisely the normal velocity in the standard Kelvin-Helmholtz instability of a 
vortex sheet, and is really only mass conservation, which is possible so long as the 
momentum balance is not disturbed inside the shear layer. The normal efflux drives a 
potential flow outside the shear layer with velocity potentials i( & Uo - c) 7 eTay. 
Hence just outside the shear layers there is a flow in the x-direction: 

-a(U, , -c)~ and +a(-U,-c)y. 

Note that this flow is O(a) smaller than that in the shear layer, but with no friction 
acting in the potential region the only mechanism available to drive flow there is the 
vertical efflux out of the shear layer. 
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The acceleration of the above horizontal flow requires a horizontal pressure gradient 

Hence there is a pressure difference across the shear layer of 

[ p ]  = 2/74 u; + c2) 7. 

E.4. Hoop stress 

Back in the shear layer we must now consider the higher-order effect of the curvature 
of the tensioned streamlines. In the large-elasticity limit, one can ignore the inertial 
terms in the y-momentum equation leaving just the elastic stress and the pressure 
gradient : 

Substituting the tilted streamline solution a12 = - i d l ,  7, we see that aa,,/ax is just the 
curvature of the streamlines applied to the basic normal stress All .  Integrating the 
above equation across the shear layer, one finds a jump in the pressure: 

[p ]  = a2rT with net tension T = G A , ,  dy. s 
Now in the basic state 

A 11 - - 2r2Uf2 = 2r2Uisech4(y/S)/S2. 

Hence the membrane tension is 
SGr’U; T = -  

36 . 

Finally, equating this elastic membrane hoop-stress pressure difference to that found 
earlier in the potential flow just outside the shear layer, we find the dispersion relation 
for the instability : 

which is the square of (48). It also agrees with Lamb for the inviscid Kelvin-Helmholtz 
instability with surface tension. The dispersion relation has a maximum growth rate 

4p u; 
3T ’ 

4pu’ which occurs at a,,, = __ urnas = ~ 3 4 3 T  

i.e. in Azaiez & Homsy’s non-dimensionalization crnaz = 0.289G-1 (cf. their 0.308G-lj 
at amaz = 0.5G-1 (cf. their 0.581G-l), which are in better agreement with the exact 
numerical results in figure 4 than the results of 3 5.1.1. 

E. 5. Validity 

We must now check the various assumptions which have been made. First there the 
large-elasticity assumption of neglecting the inertial terms compared with the elastic 
stress in the calculation of the hoop stress from the y-momentum equation. This 
requires. 

paUv < Gaa,,. 
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Substituting in the expressions for u and aI2  leads to the requirement 

J. Azaiez and G. M .  Hornsy 

pa2 4 Gr2 

Next there is an assumption that wavelength is long compared with the thickness of 
the shear layer: 

a s 4  1. 

For the wavelength at the maximum growth rate this gives, when substituting in the 
expression of the tension T, the condition pS2 4 Gr2 again. 

The assumption that the instability is fast compared with the time for the elastic 
stress to relax requires 

For the maximum growth rate this gives 

err% 1 .  

pSU, %- Gr, 

which is effectively the same as the high-Reynolds-number condition, so long as the 
elastic stresses make a significant contribution to the effective viscosity, Gr >, p. 

To summarize, the analysis needs a large Reynolds number Re = p U,, S / ( p  + GT) 9 1, 
a large Weissenberg number We = U, 7 / S  1, and a high elasticity (to make the long 
waves the only unstable ones) G72/pS2 = We/& >> 1. 

While the basic flow could be maintained by applying a suitable force fieldfin the 
momentum equation, one would really like to apply the analysis to a quasi-parallel 
quasi-steady mixing layer, and here there is a problem. At a time t after contact, a 
mixing layer has a width S(t)  scaling with (v* I);, where one would use Y* = Gr /p  when 
Gr >, p. The high-elasticity condition then gives t 4 7, which means that there is 
insufficient time to establish the quasi-steady basic stress field. Clearly a more detailed 
analysis near the splitter plate is needed. 

This work was completed while E. J. H. was a guest at PMMH, ESPCI, Paris. 
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